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ABSTRACT

The recent work has achieved great success in utilizing multi-scale feature ensembling for medical image seg-
mentation. In this paper, we propose a new module called cascaded multi-scale feature interaction (CMSI) for
choroidal atrophy segmentation in fundus images. The proposed CMSI module makes full use of multi-scale fea-
tures, including using cascaded pooling and convolution to implement feature interactions at different scales and
using strip pooling to capture long-distance features, which makes it more flexible than traditional convolution
on the choroidal atrophy region with various scales in fundus image. Based on the U-shape network, we use the
ResNet as the backbone to extract hierarchical feature representations. The proposed CMSI module is added
at the top of the encoder path. In summary, our main contributions are summarized in two aspects as follows:
(1) The CMSI module is proposed for multi-scale feature ensembling by cascading multi-scale pooling and strip
pooling. (2) The Dice coefficients of our proposed network on choroidal atrophy segmentation increased by 4.15%
compared to U-Net.

Keywords: Choroidal Atrophy Segmentation, Deep Learning, Cascaded Multi-Scale Feature Interaction, Med-
ical Image Processing

1. INTRODUCTION

The complications from pathologic myopia are a major cause of visual impairment and blindness.1 Choroidal
atrophy is one of the earliest pathological changes of pathologic myopia. Automatic segmentation of choroidal
atrophy is important for early diagnosis. Choroidal atrophy segmentation in fundus images is a challenge task
due to the following reasons: (1) The shapes and areas of choroidal atrophy are various, e.g., the area of optic
disc atrophy in patients with common myopia is small while the area of optic disc atrophy in patients with high
myopia is mostly circular arc. (2) Atrophy adjacent to the optic disc is usually blurred and difficult to identify.
(3) Fundus of patients with pathologic myopia in the early stage is similar to that of patients with high myopia,
but shows large area of atrophy in the later stage.Some examples are shown in Fig.1.

In the framework of convolutional network, there are operations of multiple convolution and downsampling.
As the number of layers increases, the receptive field gradually increases and the semantic information becomes
richer. Therefore, many new structures based on fully convolutional networks are applied to semantic segmenta-
tion tasks. U-Net2 uses skip-connections to make the structure information from the shallow layer can be reused,
and has achieved remarkable performance in medical image segmentation. But U-Net can not extract and utilize
multi-scale context information effectively.

Recently, some networks have been proposed to explore and integrate multi-scale context information. PSP-
Net,3 DeepLabV34 and CE-Net5 adopt multiple parallel poolings or atrous convolutions to process high-level
feature maps. CPFNet6 adopts the atrous convolution with shared weights to obtain multi-scale features, in
which a pixel-level soft weight is learned for each scale feature. CCNet7 and EMANet8 utilize attention mecha-
nism to allow the network to obtain a global receptive field and aggregate the features of each pixel.
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Figure 1. Examples of different fundus images.(a)Normal fundus. (b)High myopia fundus. (c)Pathologic myopia fundus
with choroidal atrophy in early stage. (d)Pathologic myopia fundus with severe choroidal atrophy. The region with green
boundary represents choroidal atrophy.

In this paper, we propose a U-shape based network with the novel cascaded multi-scale feature interaction
(CMSI) module for choroidal atrophy segmentation in fundus images. By the CMSI module, multi-scale features
can be extracted by feature interactions between sub-networks and long distance features can be extracted by
strip pooling. The experimental results show that our proposed method can solve the above problems well.

2. METHODS

2.1 Overall structure of the network

Inspired by U-Net,2 we use the encoder-decoder architecture in our network. The ResNet-349 pre-trained over
the ImageNet dataset is adopted as the backbone, and the average pooling layer and fully connected layers
are removed from the original ResNet-34. In the encoder path, the input image is downsampled to 1/32 to
obtain hierarchical feature representations. The proposed CMSI module is inserted at the top of the encoder
path to extract multi-scale semantic information. The decoder path contains four double convolutions with skip
connection. At last, upsample the score map to the original image size. The overall architecture of our network
is shown in Fig.2.

2.2 Cascaded multi-scale feature interaction module

The size of the receptive field determines how much context information the network can use. Although the
theoretical receptive field of ResNet is already larger than the input image, the empirical receptive field of CNN
is much smaller than the theoretical one especially on high-level layers.10 Previous work including PSPNet3 and
DeepLabV34 both proposed effective methods to solve this problem. But these methods deal with features of
different scales separately, without considering the relationship between features.

The structure of the proposed CMSI module is shown in Fig.3 (a), which contains two branches. The results
of the two branches are concatenated with the input, followed by a 3 × 3 convolution to transform the channel
dimension to the original input channel dimension. Different from previous work, our CMSI module can use
features of other scales to enhance semantic information at a specific scale via cascaded pooling and 3 × 3
convolution. The structure of Branch1 in CMSI is shown in Fig.3 (b), which uses different pooling sizes to get
multi-scale features and interact information between different scales simultaneously. Branch1 fuses features with
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Figure 2. Overall architecture of the proposed network.

Figure 3. (a)The structure of the proposed CMSI module. (b) The structure of Branch1 in CMSI, which uses cascaded
pooling and convolution to interact with different scale features.

four different scales. Each branch is a sub-network, in which the feature maps are downsampled step by step until
the spatial resolution is 1 and the information of the feature map with the same resolution is transmitted to each
other between each sub-network. Low-dimensional feature maps gradually concatenate pooled high-dimensional
feature maps to fuse features. Then the enhanced feature maps are directly upsampled to get the final feature
map with the same size as the original feature map via bilinear interpolation. Finally, different levels of features
are concatenated.

In Branch2 shown in Fig.4, as we think that the square receptive field may not be suitable for all objects,
especially for slender objects, the strip pooling is adopted to capture long-distance features. We consider an input
feature map with size H ×W × C from a single sample. First, the input feature map is pooled into H × 1× C
and 1×W × C, respectively. Then, we use 3× 1 and 1× 3 convolutions to reduce channel dimension. Finally,
upsample the feature maps and element-wise add the two feature maps.
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Figure 4. The structure of Branch2 in CMSI, which uses strip pooling to capture long-distance features.

3. RESULTS

3.1 Datasets

Our segmentation approach was evaluated based on the dataset which is from ISBI 2019 Pathologic Myopia
Challenge.11 The training dataset contains 161 normal images, 26 high myopia images, and 213 pathological
myopia images. As the images in the dataset have two different resolutions including 1444×1444 and 2124×2056,
the bottom of the images with size 2124× 2056 are padded to get 1:1 aspect ratio, and then all the images are
resized to 448× 448. The training data are randomly splitted into four parts and the four-fold cross validation
strategy is adopted in our experiments.

3.2 Implementation Details

We conduct experiments based on PyTorch. The training and testing bed is Ubuntu 16.04 system with a Nvidia
GeForce 1660ti graphics card, which has 6 Gigabyte memory. In training, we employ Adam optimization with
poly learning rate policy. The initial learning rate is set to 0.0001. Batch size and weight decay coefficients are
set to 4 and 0.0001, respectively. For data augmentation, we apply rotation, horizontal and vertical flipping,
contrast and brightness transformation of the image to augment the training data. The loss function contains
two items: cross-entropy loss function and Dice loss function expressed in Eq.(1). The coefficient of Dice loss
function λ is set to 0.5.

LTotal = LCE + λLDice (1)

3.3 Metrics

To quantitatively evaluate the segmentation performance, we use five common segmentation evaluation metrics:
Dice similarity coefficient (DSC), Intersection over union (IoU), Accuracy (Acc), Sensitivity (Sens), Specificity
(Spec). The definitions of these metrics are shown as follows:

DSC =
2TP

2TP + FP + FN
(2)

IoU =
TP

TP + FP + FN
(3)

Acc =
TP + TN

TP + FP + TN + FN
(4)

Sens =
TP

TP + FN
(5)

Spec =
TN

FP + TN
(6)
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where TP denotes true positive, FP denotes false positive, FN denotes false negative, TN denotes the true
negative.

Metrics include Dice similarity coefficient and F1 score are adopted for the online comparison with other
methods in the ISBI challenge leaderboard. F1 score is defined as:

F1 = 2
precision ∗ recall
precision+ recall

(7)

3.4 Results

The proposed method is compared with four other state-of-art networks including U-Net,2 Attention U-Net,12

CE-Net5 and CPFNet.6 As shown in Table 1, our method outperforms other methods by a large margin,
especially in Dice similarity coefficient and Sensitivity.

Table 1. Comparison experiments and ablation experiments (w/o means without the following component).

Method DSC(%) IoU(%) Acc(%) Sens(%) Spec(%)

U-Net2 78.33 70.81 98.05 81.35 99.24

Attention U-Net12 78.86 71.29 97.94 81.58 99.14

CE-Net5 80.48 73.25 98.25 83.66 99.24

CPFNet6 81.26 73.95 98.38 83.70 99.30

Ours (w/o CMSI) 80.88 73.88 98.30 83.64 99.20

Ours (CMSI w/o Branch1) 81.26 74.16 98.22 84.75 99.19

Ours 82.49 75.12 98.33 86.06 99.24

The ablation experiments illustrate the effectiveness of our proposed CMSI module, which are shown in the
last three rows of Table 1. The performance of the proposed network will decrease if Branch1 in CMSI module is
removed (Ours (CMSI w/o Branch1)), but it will be still higher than that of the network without CMSI module
(Ours (w/o CMSI)), indicating that both branches in the module are effective.

The online comparison with other methods in the ISBI challenge leaderboard are shown in Table 2. In terms
of Dice similarity coefficient, our proposed network without pre-processing and post-processing , exceeds the top
5 teams in the leaderboard. However, it does not show a great advantage in F1 score, which mainly due to the
false positive detection of atrophy in normal or high myopia fundus images. Post-processing such as small target
exclusion in the segmentation results may further improve the F1 score.

Table 2. Performance comparison with the methods in the challenge leaderboard online.

Team Name/Method DSC(%) F1 Score

LAIS 79.42 0.8842

KUL VITO 80.68 0.9336

VistaLab 81.40 0.8540

PingAn Smart Health 82.77 0.9389

CUHK 83.68 0.9197

Ours 84.13 0.9134

Fig.5 shows some segmentation results of choroidal atrophy. It can be seen from Fig.5 that our method
improves the segmentation performance of choroidal atrophy with various scales, which shows that our proposed
CMSI module can extract richer global contextual semantic information.
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Figure 5. Visualization of segmentation results. The green lines in original images represent the boundaries of the ground
truth. Green, red, and yellow regions represent the false negative, false positive and true positive, respectively.

4. CONCLUSIONS

In this paper, we propose a U-shape based network with the novel cascaded multi-scale feature interaction (CMSI)
module for choroidal atrophy segmentation in fundus images. The proposed CMSI module can effectively increase
the ability of multi-scale feature extraction of the network for choroidal atrophy with various scales in fundus
image. The primary experimental results show the effectiveness of our proposed network.
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